If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+50t=3
We move all terms to the left:
-16t^2+50t-(3)=0
a = -16; b = 50; c = -3;
Δ = b2-4ac
Δ = 502-4·(-16)·(-3)
Δ = 2308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2308}=\sqrt{4*577}=\sqrt{4}*\sqrt{577}=2\sqrt{577}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{577}}{2*-16}=\frac{-50-2\sqrt{577}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{577}}{2*-16}=\frac{-50+2\sqrt{577}}{-32} $
| 9y=1+7 | | X+7(2)=x-1 | | 6/5x=-27 | | -2-13.8x=18x-(6x+1) | | 25-(4x-6)+7=(-x-40)2-2x+1 | | 3(3n-3)=-81 | | 350-x=1,000 | | 40-5x=20 | | 9y=1+-7 | | -12x+-7=-43 | | 6x+25=2125 | | P-17+4p+3p=-2+7p-15 | | 4(10^x-2)=4000 | | 3/5y-6=1/4y+10 | | 14x°=22x° | | 12x+10=4x-16 | | 1/5t+2-2=17 | | 5=5t | | 20/3x=-35/3 | | X/2-x/4=x | | 350+x=1,000 | | -4p+4=16p+24 | | 25=75y | | 8x^2-2x-18=0 | | -12x-7=-43 | | n-3n-6+2=3n-4+4 | | 6x^2+12x=6x^2+24 | | 0.73+0.33=1.57t-1.13 | | 3x-54=142-4x | | (2x – 10)(x + 6) = 0 | | 8(x-3)+14=2(4+5x) | | (n-2)×180°=135°×n |